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Abstract. We study the persistencies of trails and silhouettes on two-dimensional square 
and triangular lattices. These persistencies are induced by fixing the first step of the walk 
in the positive x direction. Trails are walks which are not allowed to overlap on themselves 
but may self-intersect whereas silhouettes are just the shadows of trails. Associated with 
each self-intersection is an attractive interaction energy E = -I&[. Thus a fugacity factor 
( j ( 1 , e )  = efE/kBT = efe, where 1 is the number of intersections) may be defined. This has the 
advantage of providing a handle on the temperature and such dependence of persistencies 
on temperature is studied for the first time in this paper. They are found to obey a law that 
may be expressed as a function of the critical exponents: (X;k+'(f3)) - I P k " ( ' ) f ( I )  where 1 
is the chain length, v is the correlation exponent, f(l) * lo& 1 or some weak function of I 
(e.g. lW where w + l.O), p is a parameter and k = 0, 1,2.. .. 

1. Introduction 

It is well known that initial perturbations imposed on some physical systems may 
persist to future times as the systems evolve (see, for example, 113). Such persistency 
may also arise in stochastic walks on regular lattices [2-111. For example, in random 
walks (RW) in which the excluded-volume constraint is neglected, the walk may be 
started one lattice spacing away from an excluded point [4, 71 ; or in self-avoiding walks 
(SAW) where the excluded-volume constraint is important, the walk may be started with 
the initial step fixed in a certain direction [5-71. In all these cases, persistencies of 
the bias of the walk distribution in the direction of the first step are the physical 
quantities of interest. A measure to quantify the amount of the vestiges of this bias 
is the persistence length which is defined as the component of the end-to-end vector 
in the direction of the initial step. It has been found by various independent studies 
[5-111 that the averaged first moment of a persistence length in the direction of the 
initial step may be a power law of the chain length I ,  while a logarithmic dependence 
cannot be completely ruled out. Redner and Privman pursued this problem further by 
studying numerically the averaged odd moments of a persistence length, and provided a 
scaling analysis in support of their findings [6]. Their conclusion was that the averaged 
first moment increases logarithmically with the chain length 1 and the averaged odd 
mth moment (m = 2k + 1 and k = 1,2,. . .) increases as 12kv In I (In = log,) where v 
is the correlation exponent. This finding is interesting as it shows that the averaged 
odd moments of a persistence length may be expressed as a function of the critical 
exponents of the system. 

0305-4470/89/153059+21%02.50 0 1989 IOP Publishing Ltd 3059 
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A variant of these RW and SAW model persistency studies is a partially directed 
self-avoiding walk in which the first step is fixed in the +x direction and the subsequent 
steps are either in +x or +y. This model has been solved analytically and the averaged 
first moment of the persistence length in the +x direction is found to be a constant, 
i.e. ( X )  + (1 + 1/&) as the number of steps tends to infinity [ 6 ] .  The problem of 
the persistency of walk models is thus far from settled and a resolution is still needed. 
In this paper, we ask a similar question in the trail [12-171 and in the silhouette 
[8, 181 models, where the initial step is fixed in a fixed direction, +x say. Trails are 
walks whose bonds are not allowed to overlap, but may self-intersect (see figure 1). 
Associated with each self-intersection, an interaction energy E = - [ & I  is introduced so 
that a fugacity factor f ( 1 , O )  = e1pE = els may be defined for each walk configuration 
( I  is the number of intersections, p = l/k,T). It suffices to mention that as e + -CO, 

intersections are suppressed and the usual SAW are recovered; in the limit of e + +a, 
configurations with maximal number of intersections will dominate. It is thus obvious 
that this model interpolates in a non-trivial way the RW and SAW models [8, 16181. It 
is thus interesting to see how the persistency of this model would behave. 

t - 
( a )  i b )  

Figure 1. ( a )  Two topologically distinct trails with an intersection: a self-crossing inter- 
section (top) and an osculating intersection (bottom). Associated with each intersection 
is a factor of e o ;  ( b )  the corresponding silhouette. The persistence length is just the x 
component of the end-to-end vector 1. 

Silhouettes [8, 181 on the other hand, are just the shadows of trails, i.e. the 
equivalence class of trails when the chronological order of the building bonds is 
ignored (see figure 1). This model is interesting in its own right for it has been 
shown via renormalisation group analysis [ 151 that it possesses non-Gaussian tricritical 
exponents, distinct from its @-point counterparts of self-attracting SAW (see [19, 201 
and references therein). Exact enumeration studies have also shown that trails and 
silhouettes have different tricritical exponents at their respective tricritical points [8, 
16-18]. Moreover, the temperature dependence (via the fugacity factor) provides a 
possible probe for exploring the region at which the models (trails and silhouettes) 
transit from their respective swollen regimes to their respective collapsed regimes as 
the temperature is lowered. 

The study of persistencies in trails and silhouttes is interesting in another respect: 
we recall that on regular lattices the coordination numbers are finite. So for trails 
(silhouettes), any point may be visited only a finite number of times (for example, on a 
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square lattice, a point may be visited at most twice, except the initial point which may 
be visited thrice) after which the point is saturated and becomes an ‘excluded point’. 
We thus see that the persistence length of the trail and the silhouette models may have 
some of the property of an excluded-point problem as well as an excluded-volume 
(from no bond overlap) problem. This should be constrasted with SAW in which every 
point traversed by the walk is immediately ‘excluded’ (because of no overlap and no 
self-intersection). Another related but noteworthy point is that for SAW, an excluded- 
point constraint is equivalent to fixing the direction of the first step [6, 71 whereas 
in trails (silhouettes), the excluded-point constraint is very different from fixing the 
direction of the first step since in the latter, the walk may self-intersect. Thus we see 
that the ‘excluded-point’ constraint is somewhat relaxed in the trail and the silhouette 
models. Consequently, we would also expect intuitively that the persistence lengths of 
trails and silhouettes would be smaller in magnitude than those of SAW. 

It is the main purpose of this paper to investigate by exact enumeration the 
persistencies of trails and silhouettes on two-dimensional (2D) square (loose-packed) 
and triangular (close-packed) lattices. In $2, we will define the symbols and the 
thermodynamical functions that we will use in subsequent sections. Section 3 presents 
the results of exact enumerations and $4 discusses the various analysis methods of the 
first four averaged odd moments of the persistence lengths. In $5, the results for the 
square lattice are presented while the corresponding results for the triangular lattice 
are given in 56. In $7, comparisons of the persistencies of the two models and of the 
two models on the two lattices are made, and are compared and contrasted with those 
of SAW and ‘excluded-point’ RW. A conclusion of our investigation is also drawn in the 
same section. 

2. Symbols and thermodynamic functions 

If we denote by C(I, I ,  r )  the total number of trails (silhouettes) with length I, having I 
intersections and end-to-end distance r ,  then the total number of trails (silhouettes) of 
length 1 with I intersections, and the ensemble end-to-end vector R (see figure 1) are 
given respectively by 

r 

The ensemble end-to-end vector R should not be confused with the configurational 
end-to-end vector r which is the end-to-end vector of a particular configuration. The 
partition function (for configurations of length I )  on a lattice is thus 

120 

From equations ( lb )  and (2), the first moment of the persistence length and the 
averaged mth moment of the persistence length along the direction of the initial step 
(+x) are respectively defined as [5-81 
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where 2 is a unit vector in the f x  direction and (. . .) denotes ensemble average of the 
argument. 

Following [&SI, we shall now focus our attention only on the odd moments because 
they provide a natural way to quantify any asymmetry of the displacement distribution 
induced by fixing the first step. In these references, it has been shown that the averages 
of odd moments of persistence lengths for SAW of length 1 in 2D can be expressed as 
(In log,) 

It is interesting to note that the averaged first moment is of the same functional form as 
the analytical prediction for random walk with an excluded point [4, 71. The question 
thus is whether the averaged first moment and higher odd moments of the persistence 
lengths of trails and silhouettes would scale according to the same law. 

3. Exact enumeration 

In the exact enumeration process, the first step is always fixed along the positive x 
direction. This serves the dual purposes of reducing enumeration time by a factor 
of l / q  where q is the coordination number (from rotational symmetry consideration 
of unperturbed walks) and of setting up the initial 'perturbation'-the persistency of 
which will be studied. We have enumerated the first four odd moments, categorised 
according to the number of intersections I ,  and the chain lengths 1 (see tables 1-4). 

Tabulated in this manner, the averaged moments of the persistence length may be 
studied as a function of temperature via the fugacity factor f ( Z , O )  = ere (and/or as a 
function of the chain length). It might be argued that our chains are relatively short 
( I  = 20 for square lattice and 1 = 13 for triangular lattice), but it should be noted that 
we have classified the data into different topological classes according to the number of 
intersections. In fact, the crux of the enumeration lies in this classification which takes 
up most of the memory and consumes the major part of the computer runtime. This 
is especially true when there is no general topological relation@) relating the number 
of trails to the corresponding number of silhouettes. All the enumerations take about 
30 CPU hours on a VAX 8700. 

3.1. Square lattice 

On this lattice, the enumeration is performed with the 2 and axes as the basis 
vectors. Since the first link is fixed along the positive x direction, the configurational 
mth moment persistence length is simply the mth power of the component of the 
configurational end-to-end vector r along the x direction, i.e. ( r  . Table 1 presents 
the first three odd moments of the persistence length, X Z k + ' ( I , I )  (k = 0,1,2) for trails 
of chain length up to 1 = 20 and number of intersections of I = 6; table 2 gives the 
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Table 1. Trails on a square lattice: (a) the first odd moment of the persistence length 
X(1.1) ;  (b) the second odd moment of the persistence length X 3 ( ! , l ) ;  (c) the third odd 
moment of the persistence length X5(1,1) .  Notation: EN 

3063 

xl@. 

1 I = O  I = 1  1 = 2  1 = 3  1 = 4  i=5 1 = 6  

(4 X ( 1 , I )  
3 0.13000E2 
4 0.40000E2 
5 0.11700E3 
6 0.33800E3 
7 0.95500E3 
8 0.26880E4 
9 0.74650E4 

10 0.20698E5 
11 0.56901E5 
12 0.15627E6 
13 0.42669E6 
14 0.1164287 
15 0.31632E7 
16 0.85897E7 
17 0.23252E8 
18 0.62918E8 
19 0.16983E9 
20 0.45824E9 

0.00000EO 
0.20000El 
0.12000E2 
0.5800082 
0.22000E3 
0.81000E3 
0.27160E4 
0.90020E4 
0.28508E5 
0.89274E5 
0.27294E6 
0.8260586 
0.24645E7 
0.72931E7 
0.21375E8 
0.62246E8 
0.18001 E9 

0.20000E1 
0.16000E2 
0.74000E2 
0.33600E3 
0.12280E4 
0.45600E4 
0.15490E5 
0.5226885 
0.17042E6 
0.54671 E6 
0.17263E7 
0.53748E7 
0.16559E8 
0.50481 E8 

0.80000E1 
0.84000E2 
0.38400E3 
0.18040E4 
0.68320E4 
0.25780E5 
0.9 1 5 12E5 
0.31 382E6 
0.10568E7 
0.34655E7 
0.1 1218E8 

0.40000E2 
0.46400E3 
0.22200E4 
0.10544E5 0.20800E3 
0.4150485 0.24640E4 
0.1571486 0.13 120E5 0.16000E3 
0.56945E6 0.60800E5 0.24000E4 
0.19971 E7 0.25514E6 0.18208E5 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

x 3 ~  1 )  
0.61000E2 
0.29200E3 
0.12210E4 
0.46880E4 
0.16951 E5 
0.58704E5 
0.19666E6 
0.64 197E6 
0.20522E7 
0.64482E7 
0.1997 1 E8 
0.61 102E8 
0.18499E9 
0.55497E9 
0.16516E10 
0.48808E 10 
0.14333E11 
0.41853E11 

0.00000EO 
0.20000El 
0.24000E2 
0.22600E3 
0.13960E4 
0.73380E4 
0.33724E5 
0.14281E6 
0.56667E6 
0.21430E7 
0.77980E7 
0.27508E8 
0.94581E8 
0.3 1827E9 
0.105 15E 10 
0.34 198E 10 
0.10970E11 

0.20000E 1 
0.64000E2 
0.43400E3 
0.26040E4 
0.12772E5 
0.58536E5 
0.2483486 
0.10035E7 
0.38913E7 
0.14583E8 
0.53155E8 
0.18913E9 
0.6592389 
0.22569E10 

0.80000E1 
0.2520083 
0.18240E4 
0.12412E5 
0.65416E5 
0.3 1671 E6 
0.14094E7 
0.5902087 
0.2363 1 E8 
0.91093E8 
0.34056E9 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

x5u, I )  
0.37300E3 
0.27400E4 
0.16077E5 
0.8 1608E5 
0.37446E6 
0.15948E7 
0.64158E7 
0.24671E8 
0.9 1470E8 
0.32906E9 
0.11542E10 
0.39623E10 
0.13353E11 
0.44278E11 
0.14476E12 
0.467428 12 
0.14925E 13 
0.47183E 13 

0.00000EO 
0.20000El 
0.7200082 
0.1 1380E4 
0.11380E5 
0.85050E5 
0.5268886 
0.2860487 
0.14094E8 
0.64454E8 
0.27794E9 
0.11428E10 
0.45 178E10 
0.17281Ell 
0.64268E11 
0.2333 1 E 12 
0.82939E 12 

0.20000E1 
0.25600E3 
0.35540E4 
0.29916E5 
0.19743E6 
0.1 1 264E7 
0.58065E7 
0.2778188 
0.12548E9 
0.54087E9 
0.2243 1 E 10 
0.90022E 10 
0.35123E11 
0.13370E 12 

0.80000E1 
0.92400E3 
0.10944E5 
0.1 1196E6 
0.82871 E6 
0.52403E7 
0.29288E8 
0.14956E9 
0.7 124 1 E9 
0.32 105E 10 
0.13826E11 

0.23 200E 3 
0.33440E4 
0.19692E5 
0.11062E6 0.8320083 
0.53144E6 0.15376E5 
0.24061E7 0.10202E6 0.16000E3 
0.10292E8 0.61640E6 0.14784E5 
0.42 192E8 0.3 1541 E7 0.161 34E6 

0.10000E4 
0.29264E5 
0.24846E6 
0.17589E7 0.33280E4 
0.10440E8 0.1 1502E6 
0.56269E8 0.10336E7 0.16000E3 
0.28133E9 0.84346E7 0.12000E6 
0.13286ElO 0.54852E8 0.20548E7 
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Table 2. Silhouettes on a square lattice: (a) the first odd moment of the persistence length 
X ( / , I ) ;  ( b )  the second odd moment of the persistence length X 3 ( l , I ) ;  (c) the third odd 
moment of the persistence length X 5 ( / , I ) .  

I I = O  1 - 1  1 = 2  1 = 3  1 = 4  i=5 1 = 6  

(4 X ( I , I )  
3 0.13000E2 
4 0.40000E2 
5 0.11700E3 
6 0.33800E3 
7 0.95500E3 
8 0.2688084 
9 0.74650E4 

10 0.20698E5 
11 0.56901E5 
12 0.15627E6 
13 0.42669E6 
14 0.11642E7 
15 0.3163287 
16 0.85897E7 
17 0.23252E8 
18 0.62918E8 
19 0.16983E9 
20 0.45824E9 

0.00000EO 
0.10000E1 
0.60000El 
0.29000E2 
0.1 l W E 3  
0.40500E3 
0.1 358084 
0.45010E4 
0.14254E5 
0.44637E5 
0.13647E6 
0.41303E6 
0.12323E7 
0.36466E7 
0.10687E8 
0.31 123E8 
0.9000388 

0.33333EO 
0.26667E 1 
0.12667E2 
0.59333E2 
0.22300E3 
0.84467E3 
0.29310E4 
0.10041 E5 
0.33290E5 
0.10812E6 
0.34560E6 
0.10883E7 
0.33885E7 
0.10421E8 

0.50000EO 
0.55833El 
0.26500E2 
0.12583E3 
0.49 150E3 
0.18823E4 
0.68203E4 
0.23753E5 
0.81 345E5 
0.27088E6 
0.88962E6 

0.87273EO 
0.1 1300E2 
0.58350E2 
0.2827 1 E3 0.178 10E 1 
0.11471E4 0.2303282 
0.44332E4 0.13310E3 0.52632EO 
0.164 14E5 0.63429E3 0.7841 7E 1 
0.58679E5 0.2749084 0.63045E2 

(b )  
3 
4 
5 
6 
7 
8 
9 

I O  
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 

XV, I )  
0.61000E2 
0.29200E3 
0. t2210E4 
0.46880E4 
0.1695 1 E5 
0.58704E5 
0.19666E6 
0.64197E6 
0.20522E7 
0.6448287 
0.19971E8 
0.61102E8 
0.18499E9 
0.55497E9 
0.165 16E 10 
0.48808ElO 
0.14333Et 1 
0.41853Ell 

0.00000EO 
0,tOOOOEl 
0.12000E2 
0.1 1300E3 
0.69800E3 
0.36690E4 
0.16862E5 
0.71407E5 
0.2833 3E6 
0.10715E7 
0.38990E7 
0.13754E8 
0.47291E8 
0.15914E9 
0.52577E9 
0.17O99E10 
0.54851 E10 

0.33333EO 
0.10667E2 
0.72667E2 
0.43933E3 
0.21970E4 
0.10269E5 
0.44497E5 
0.18341 E6 
0.7248 1 E6 
0.27636E7 
0.10236E8 
0.3695 1 E8 
0.1 3052E9 
0.45224E9 

0.50000EO 
0.16083E2 
0.12400E3 
0.85233E3 
0.45645E4 
0.22456E5 
0.101 59E6 
0.43269E6 
0.1761 5E7 
0.69034E7 
0.26223E8 

0.52364E1 
0.76755E2 
0.46865E3 
0.27118E4 0.71238El 
0.13470E5 0.14053E3 
0.62716E5 0.99665E3 0.52632EO 
0.27584E6 0.61 107E4 0.46726E2 
0.1 1605E7 0.32060E5 0.52955E3 

(c) 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

x5(1,1) 
0.37300E3 
0.27400E4 
0.16077E5 
0.81608E5 
0.37446E6 
0.1 5948 E7 
0.6415887 
0.2467 1 E8 
0.91470E8 
0.32906E9 
0.11 542E10 
0.39623ElO 
0.13353E11 
0.44278Ell 
0.14476E12 
0.46742E 12 
0.14925E13 
0.47 l83E 13 

0.00000EO 
0.10000El 
0.36000E2 
0.56900E3 
0.56900E4 
0.42525E5 
0.26344E6 
0.14302E7 
0.70468E7 
0.32227E8 
0.13897E9 
0.57141E9 
0.22589ElO 
0.86403E10 
0.32134E11 
0.11666E12 
0.41469E12 

0.33333EO 
0.42667E2 
0.59267E3 
0.49993E4 
0.33213E5 
0.19168E6 
0.10021 E7 
0.48725E7 
0.22382E8 
0.98131 E8 
0.41378E9 
0.16873E 10 
0.66827E 10 
0.25800E11 

0.50000EO 
0.58083E2 
0.72400E3 
0.76283E4 
0.57267E.5 
0.36748E6 
0.20812E7 
0.10774E8 
0.52037E8 
0.23783E9 
0.10388ElO 

0.22691E2 
0.66585E3 
0.57280E4 
0.41245E5 0.28495E2 
0.25086E6 0.10237E4 
0.13868E7 0.9877984 0.52632E0 
0.71179E7 0.8207185 0.37622E3 
0.3451 1E8 0.5437886 0.65341E4 
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corresponding moments for silhouettes. The numbers shown are measured in units in 
which the lattice spacing is of length unity. 

Table 3. Trails on a triangular lattice: (a )  the first odd moment of the persistence length 
X ( 1 , l ) ;  ( 6 )  the second odd moment of the persistence length X 3 ( l , 1 ) ;  (c) the third odd 
moment of the persistence length X 5 ( l ,  I). 

1 I = O  I = 1  1 = 2  1 = 3  1 = 4  1 = 5  1 = 6  

(0) 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
- 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

X ( I , I )  
0.60000E1 
0.31000E2 
0.14900E3 
0.69000E3 
0.3 1260E4 
0.13953E5 
0.61618E5 
0.26995E6 
0.11754E7 
0.50924E7 
0.2197488 
0.94503E8 

x3(1,1) 
0.15WE2 
0.13900E3 
0.10303E4 
0.67238E4 
0.40407E5 
0.22925E6 
0.12466E7 
0.65631E7 
0.33680E8 
0.16930E9 
0.83661 E9 
0.40756E10 

0.00000EO 
0.50000E1 
0.60000E2 
0.4610083 
0.29520E4 
0.17 1 18E5 
0.93267E5 
0.48684E6 
0.24626E7 
0.12162E8 
0.58946E8 

0.40000E1 
0.62000E2 
0.57400E3 0.80000E1 
0.42520E4 0.26200E3 
0.27614E5 0.32520E4 0.84000E2 
0.16549E6 0.28068E5 0.19040E4 
0.93951E6 0.20372E6 0.24600E5 0.38800E3 
0.51286E7 0.1 3316E7 0.22863E6 0.1 1728E5 
0.27169E8 0.81250E7 0.17530E7 0.16607E6 0.29840E4 

0.00000EO 
0.575M)El 
0.14700E3 
0,1958884 
0.19 160E5 
0.1563386 
0.1 13 14E7 
0.75246E7 
0.47003E8 
0.27976E9 
0.16026E 10 

0.25000E1 
0.14450E3 
0.22810E4 0.80000El 
0.24568E5 0.54250E3 
0.21744E6 0.11190E5 0.18900E3 
0.17000E7 0.14368E6 0.65300E4 
0.1218988 0.14430E7 0.11213E6 0.65500E3 
0.81882E8 0.12454E8 0.13676E7 0.34816E5 
0.52275E9 0.96819E8 0.13562E8 0.73263E6 0.92300E4 

(4 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

~ 5 ~ 1 )  
0.47250E2 
0.79600E3 
0.90506E4 
0.82610E5 
0.65468E6 
0,4700487 
0.31375E8 
0.19802E9 
0.11955E10 
0.69629E 10 
0.39364E11 
0.21 704E12 

0.00000EO 
0.59375El 
0.46 125E3 
0.11033E5 
0.1641 3E6 
0.18634E7 
0.17736E8 
0.14907E9 
0.11424E10 
0.81512E10 
0.54953E11 

0.21250E1 
0.4201 3E3 
0.12323E5 0.80000El 
0.20041E6 0.16926E4 
0.24291E7 0.55670E5 0.42525E3 
0.24571E8 0.10509E7 0.30787E5 
0.2 1952E9 0.14527E8 0.76464E6 0.2 16 18 E4 
0.17896E10 0.1641 5E9 0.12434E8 0.16107E6 
0.13588E11 0.16095E10 0.15838E9 0.47695E7 0.38692E5 

3.2. Triangular lattice 

On this lattice, the enumeration is performed with 2 and (-12 + &9)/2  as the basis 
vectors. Since the basis vectors are not orthogonal, care has to be taken so that the 
contributions from (-12 + f i 9 ) / 2  are accounted for. Table 3 gives the first three 
odd moments of the persistence length for trails and table 4 gives the corresponding 



3066 D E Burnette and H A Lim 

moments for silhouettes. These numbers are also in units of unit lattice spacing. Even 
though the enumerations here are only up to a chain length of 1 = 13, the maximum 
number of intersections reached is I = 6,  the same as the enumerations on a square 
lattice. Since equation (3) is essentially a series in ele, this means that we have reached 
the same number of terms in the expansion on both the square and the triangular 
lattice. 

Table 4. Silhouettes on a triangular lattice: ( a )  the first odd moment of the persistence 
length X ( 1 , I ) ;  ( b )  the second odd moment of the persistence length X3(1 ,1 ) ;  (c) the third 
odd moment of the persistence length X s ( l ,  I ) .  

1 I = O  I = 1  1 = 2  1 = 3  1 = 4  i=5 1 = 6  

(4 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 

X(U)  
0.60000E1 
0.31000E2 
0.14900E3 
0.69000E3 
0.31260E4 
0.13953E5 
0.6161 8E5 
0.26995E6 
0.1 1754E7 
0.50924E7 
0.21974E8 
0.94503E8 

0.00000EO 
0.25000E1 
0.30000E2 
0.23050E3 
0.14760E4 
0.85590E4 
0.46634E5 
0.24342E6 
0.12313E7 
0.608 1 1 E7 
0.29473E8 

0.66666EO 
0.10333E2 
0.9725082 0.50000EO 
0.74592E3 0.16750E2 
0.50109E4 0.2114283 0.19091E1 
0.30908E5 0.18791E4 0.42752E2 
0.17977E6 0.14137E5 0.56959E3 0.23375El 
0.10018E7 0.95628E5 0.55365E4 0.81458E2 
0.54019E7 0.60179E6 0.44370E5 0.12653E4 0.63128El 

(b) X3U,I) 
2 0.15000E2 
3 0.13900E3 
4 0.10303E4 
5 0.67238E4 
6 0.40407E5 
7 0.22925E6 
8 0.12466E7 
9 0.6563187 

10 0.3368088 
11 0.16930E9 
12 0.83661E9 
13 0.40756ElO 

(4 mu 
2 0.47250E2 
3 0.79600E3 
4 0.90506E4 
5 0.82610E5 
6 0.65468E6 
7 0.47004E7 
8 0.31375E8 
9 0.19802E9 

10 0.11955El0 
11 0.69629E10 
12 0.39364E11 
13 0.21704El2 

0.00000EO 
0.28750El 
0.73500E2 
0.97938E3 
0.95798E4 
0.78164E5 
0.56569E6 
0.37623E7 
0.2350 1 E8 
0.13988E9 
0.801 28E9 

0.41666E0 
0.2408 3 E2 
0.38294E3 
0.41 914E4 
0.37957E5 
0.30426E6 
0.22355E7 
0.15365E8 
0.1001 5E9 

0.00000EO 
0.29688El 
0.2306383 
0.55 166E4 
0.82064E5 
0.93172E6 
0.88681E7 
0.74537E8 
0.57 1 18E9 
0.40756E10 
0.27477Ell 

0.50000EO 
0.34 188E2 
0.7 1460E3 0.42954El 
0.94393E4 0.14657E3 
0.97689E5 0.25261E4 0.49281El 
0.86805E6 0.31773ES 0.25837E3 
0.69405E7 0.32764E6 0.56417E4 0.22334E2 

0.35417EO 
0.70021 E2 
0.2056984 0.50000EO 
0.33710E5 0.10605E3 
0.4144286 0.35248E4 0.96648El 
0.42707E7 0.68081E5 0.69276E3 
0.38959E8 0.96612E6 0.17138E5 0.17576E2 
0.32446E9 0.11206E8 0.28361E6 0.12606E4 
0.25154E10 0.11271E9 0.37185E7 0.3736885 0.10049E3 

3.3. Confidence in the enumeration 

As with any calculations of this nature, where the configurations are enumerated 
exactly, evidence must be adduced that no configurations have been duplicated or 
omitted. Checks are made in several ways. 
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(i) We compare our numbers in the I = 0 column (i.e. no intersections) against the 
numbers for SAW in the existing literature [5 ,  61. 

(ii) Graphs for low orders are also enumerated by hand to double check the 
numbers. 

(iii) Where symmetries are employed in the enumeration, we have also enumerated 
without symmetry consideration and then symmetry consideration is used to enumerate 
to higher orders. 

(iv) The sum of all configurations over I for a fixed 1 is the number of Malakis 
trails Cf (1 ,O)  = 1). This provides a further check against the existing literature [12, 131. 

Exact agreement (wherever comparison is possible) is found in each case. This gives us 
confidence that our numbers are reliable and good. 

3.4. Some inferences 

From the way tables 1-4 are presented, careful observations or simple calculations will 
immediately lead to a few quick inferences. Since the tables are tabulated in this way 
for the first time, a few (somewhat detailed) remarks that are of general interest are in 
order at this point. 

(i) The I = 0 columns in the trail and silhouettes tables are identical because in 
this case, trails and silhouettes are one and the same and are actually SAW. 

(ii) In the I = 1 column, the numbers in the silhouette tables are half those in 
the trail tables because for configurations with one intersection, two trails have one 
common silhouette (see figure 1). If we recall that persistence lengths are just the 
arithmetic sums of the components of the configurational end-to-end vectors along the 
direction of the first step, we easily see that this is actually the case. There is however, 
no apparent simple topological relation between the number of trails having the same 
silhouette for higher I. 

(iii) Higher-averaged moments increase at a much faster rate. Indeed, the reduced 
moment [6, 81 is 

- 2k+l Futhermore, M I  (e) increases as 0 increases, in accordance with previous observations 

(iv) (X,?k+’ (e)) decreases as 8 increases because the configurations are more compact 
as 8 increases. 

(v) It is also interesting to note the behaviour of the ratio r (1 , I )  = X ( l , I ) / c ( l , I ) .  
With the exception of a few r( l ,  I) (configurations with maximal number of intersections) 
which show ‘anomalous’ behaviour, r(1, I) increases as 1 increases for a fixed I; r( l ,  I) 
decreases as I increases for a fixed 1. The ‘anomalies’ are easily explained. Without loss 
of generality, we will explain the ‘anomaly’ observed in ( l , I )  = (9,2). Configuration 
(7,2) corresponds to figure 2. As the chain length increases, the persistency does not 
increase at a rate as fast as the increase in c(1, I), and hence the observed ‘dip’ in r(9,2). 
Other anomalies are similarly explained but they are expected to vanish as 1 + 00. 

(vi) It is also worth noting that X ( I )  = Cl X(1, I ) /  Cl c( l ,  I )  decreases as I increases. 
This is accounted for as a consequence of the rapid collapse of the configurations as 8 
is increased. 
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( a )  I b )  

Figure 2. Two representative trails of length I = 7 with the maximal number of intersections. 
By fixing the first bond along the fx  direction, there are six of this type of configuration 
(two of ( a )  and four of ( b ) ) .  

4. Analysis of the data 

Even though there is still no consensus as to what functional form the first moment 
of the persistence length should be, there is a general agreement (at least by heuristic 
arguments) that the higher odd moments of the persistence length should scale as some 
power of the chain length 1. It is rather unfortunate that our short exact enumeration 
series can provide no resolution to this controversy. We thus propose to overcome this 
dilemma by assuming a priori that the odd moments of the persistence lengths obey 
scaling laws of the form [5-81: 

where the arguments show explicitly any possible temperature dependence of the 
various quantities, and where we have introduced a parameter p, f (1)  is some function 
of 1 (e.g. f ( l )  3 In1 or f ( I )  I” where w is an exponent) and the Ak(8)  are the 
amplitudes. v ( 8 )  is a universal exponent and is expected to assume only three possible 
values [8, 16-18]: 

vsAw if 8 c 8, swollen phase 
v ( e )  = if 8 = 8, tricritical point 

l /d  if 8 > et collapsed phase 
(7) 

where d is the dimensionality, the subscript ‘t’ stands for ‘tricritical’. If we recall 
that universality class is lattice independent, we would then expect persistency to be 
a long-range effect and thus we would also expect persistence lengths on these two 
lattices (square and triangular) to scale according to the same functional form. These 
moments of persistence lengths are best displayed by taking the Naperian logarithms 
of equation (6) : 

(8) log,o(X:k”(w = P k V ( 8 )  log,, 1 + loglof(1) + log10 A,. 

An alternative to equation (8) is to analyse one of the reduced moments, 
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The latter expression has the advantage that the f(1) terms all drop out when a 
Naperian logarithm is taken. 

Another useful piece of information may be extracted if we recall that trails and 
silhouettes [8, 16181 share the same critical exponents except possibly at the tricritical 
points (of trails and silhouettes which are not necessarily one and the same). We 
would then expect the persistence lengths of trails and silhouettes to be equal except 
in the vicinity of the tricritical points. In order to facilitate comparison of trails and 
silhouettes, we shall highlight this by defining the differences of averaged moments of 
persistence lengths : 

(1) the variation of persistence length with chain length, 
(2) the dependence of persistence length on temperature, and finally 
(3) the variation of A:k+' with temperature. 

5. Analysis for trails and silhouettes on a square lattice 

5.1 .  Variation with chain length 

Figures 3 and 4 are plots of log,o(X:k+') against log,, 1. It is obvious from the log-log 
plot of (X) against 1 that it is concave inwards towards the 1 axis. One may be tempted 
to conclude immediately that our results for the first odd moment fit ( X )  - In 1 better. 
However, one has to exercise caution when one is dealing with short chains ( I  - 20). 
For short chains, stiffness of the chain will tend to increase the persistence length. This 
may explain the relatively higher gradients of the log-log plots for low values of 1. We 
thus decide to try to perform a least-squares fit of our data between 6 I 1 I 20, but our 
results are not conclusive enough to discern a In 1 dependence from a I" dependence. 

Log-log plots of the higher odd moments of the persistence lengths are linear for 
sufficiently low 8, indicating that the f(1)  term increases much slower than the power 
term. This has the important implication that f(1) may be In1 or if f(1) - I" ,  then 
w < 1.0. In fact, the latter observation is in agreement with previous simulation results 
that w - [5 ,  101. Thus in our analysis, we will try to fit our data using a functional 
form 

y = a x + b  (1 1) 

where the slope a and the intercept b of the logarithmic plots are to be determined 
using a linear regression technique, i.e. 

/ m + n  . m+n m t n  \ 

r .  , . 
\ / = m  I=m I=m 1 

Y I=m x: - 1 n + l  gxl)2] -' 
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Figure 3. (a) A 3~ plot of the first odd moment of the persistence length of trails on a square 
lattice as a function of the chain length 1 and the temperature 8. ( b )  The corresponding 3D 
plot for silhouettes on a square lattice. 

We have best-fitted the reduced moments as defined in equation (9) by this regression 
technique. It should be emphasised that the regression coefficients are determined 
by averaging values of the coefficients obtained for lmin 5 I I I,,, (inclusive) where 
I,,, = 20 and lmin = 8, ..., 12. We choose lmin 2 8 so that any possible stiffness of 
short chains is removed; and I,, I 12 so that there are enough data points to fit the 
regression. The results are tabulated in table 5. 

5.2.  Variation with temperature 

Figures 5(a)  and 5(b) are the projections of figures similar to that of figure 3 onto the 
surfaces of constant I ( I  = 15-20) for the seventh moments of the persistence length 
( ( X ’ ) ) .  The other odd moments behave in a qualitatively similar manner. It is seen 
that as the temperature is lowered (or 6 = l/k,T is increased), the odd moments 
of the persistence length decrease rather slowly at first (in the swollen regime) and 
then decrease very rapidly to the collapse regime within a relatively narrow range of 
temperature. It is not surprising that the temperature at which this rapid decrease 
occurs coincides closely with the tricritical temperature [9, 111. Comparison of figures 
5(a)  and 5(b)  reveals that for silhouettes, the collapse occurs at a larger value of 6. 
This would imply that the tricritical temperature of silhouettes is lower than that of 
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2 4 6 8 10 20 

k l , o  

Figure 4. Log-log plots of (X), (X3), (X’) and (X’) against I at a constant 8 = 0.0 in (a) 
trails and (b)  silhouettes on a square lattice; and at a constant 8 = 4.0 in (c) trails and ( d )  
silhouettes on a square lattice. 

trails, in agreement with earlier observations [ 17, 181, 
In table 5(a), we present the values of pkv from the best fit of equation (9) as 

a function of 8. We have also carefully scanned the regions in the vicinities of the 
tricritical temperature. In particular, at 8 = -cc (i.e. SAW), we have 

1.557 if k = 1 
3.110 i f k = 2  
4.656 if k = 3 
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Table 5. The values of ( a )  the linear regression coefficients of the Naperian logarithm, 
pkv, and ( b )  the prefactors, bglo(Ak/Ao), for the first four odd moments of the persistence 
lengths for trails and silhouettes on a square lattice. 

Trails Silhouettes 

e k = l  k = 2  k = 3  k = l  k =2 k = 3  

(a) pkv 
- X  
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1 .o 
1.084 
1.086 
1.088 
1.400 
2.0 
2.400 
3.0 
4.0 
5.0 

1.557 
1.557 
1.556 
1.553 
1.547 
1.528 
1.468 
1.235 
1.197 
1.196 
1.195 
1.023 
0.637 
0.484 
0.479 
0.627 
0.661 

3.110 
3.109 
3.107 
3.102 
3.088 
3.050 
2.933 
2.513 
2.447 
2.445 
2.443 
2.135 
1.365 
0.950 
0.761 
1.075 
1.356 

4.656 1.557 3.110 4.656 
4.655 1.557 3.109 4.656 
4.652 1.556 3.108 4.654 
4.645 1.555 3,106 4.651 
4.626 1.552 3.099 4.642 
4.572 1.543 3.081 4.616 
4.409 1.519 3.031 4.544 
3.847 1.445 2.884 4.339 
3.759 1.434 2.863 4.310 
3.756 1.433 2.862 4.309 
3.754 1.433 2.862 4.308 
3.342 1.380 2.761 4.169 
2.248 1.199 2.428 3.714 
1.542 1.002 2.065 3.216 
0.991 0.670 1.390 2.230 
1.223 0.512 0.855 1.138 
1.729 0.626 1.098 1.298 

Trails Silhouettes 

e IOgloAo k = l  k = 2  k = 3  IogloAo k = l  k = 2  k = 3  

(b)  b , o  
-m 0.149 

-4.0 0.149 
-5.0 0.149 

-3.0 0.148 
-2.0 0.148 
-1.0 0.146 
0.0 0.147 
1.0 0.158 
1.084 0.156 
1.086 0.156 
1.088 0.156 
1.400 0.143 
2.0 0.040 
2.400 -0.057 
3.0 -0.170 
4.0 -0.236 
5.0 -0.229 

-0.065 
-0.064 
-0.064 
-0.063 
-0.059 
-0.049 
-0.012 
0.155 
0.183 
0.184 
0.185 
0.317 
0.586 
0.636 
0.479 
0.140 
0.008 

-0.032 
-0.032 
-0.030 
-0.027 
-0.018 
-0.009 
0.094 
0.422 
0.416 
0.477 
0.479 
0.730 
1.330 
1.579 
1.469 
0.723 
0.174 

0.071 
0.072 
0.074 
0.079 
0.094 
0.135 
0.262 
0.725 
0.799 
0.801 
0.803 
1.152 
2.055 
2.567 
2.736 
1.855 
0.882 

0.149 
0.149 
0.149 
0.149 
0.148 
0.147 
0.146 
0.153 
0.155 
0.155 
0.155 
0.163 
0.174 
0.149 
0.014 

-0.243 
-0.322 

-0.065 
-0.064 
-0.064 
-0.064 
-0.062 
-0.057 
-0.044 
-0.001 
0.006 
0.006 
0.006 
0.040 
0.164 
0.304 
0.515 
0.42 1 
0.127 

-0.032 
-0.032 
-0.03 1 
-0.030 
-0.025 
-0.01 3 
0.022 
0.126 
0.141 
0.142 
0.142 
0.216 
0.469 
0.749 
1.238 
1.323 
0.673 

0.071 
0.07 1 
0.072 
0.075 
0.082 
0.102 
0.156 
0.315 
0.338 
0.338 
0.339 
0.449 
0.8 15 
1.219 
1.99 1 
2.509 
1.736 

which, after inserting v(SAW) = 0.75, leads immediately to 
2.076 if k = 1 

{ 2.069 if k = 3. 
These results are in excellent agreement with the result of p = 2.0 obtained from scaling 
analysis [6]. Similarly for e = 0 (Malakis trails), we have 

P = 2.073 if k = 2 (14) 

1.468 if k = 1 

4.409 if k = 3 
2.933 if k = 2 (15) 
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0. 
c- a 

0. 

e 
Figure 5. Plots of (X ' )  against t? for I = 15-20 in (a) trails and (b) silhouettes on a square 
lattice; and ( c )  a plot of A: for I = 15-20. 

or that v(Ma1akis) = 0.734k0.025 where the error bar is determined from the difference 
in values of v obtained by using p = 2.0 and p = 2.073. This result is interesting as 
it purports the belief that Malakis trails and SAW share the same critical exponent 
v = 0.75. It is also very interesting to note that the values of v extracted by this 
technique at 8 = 1.088 and 1.400 (for trails) and at 8 = 2.4 (for silhouettes) agree with 
results obtained by the scanning method [ I l l  and by Dlog Pade approximant analysis 
[17, 181. For completeness, we give in table 5(b)  the estimates of the values of the 
prefactors A, (see equations (6) and (9)). In the swollen phase, A, - 1.5 whereas in the 
compact phase, the A, behave more erratically. 

5.3. Variation of A:,+' with temperature 

Figure 5 ( c )  depicts a plot of AY (being representative of A:,+') against 8 (15 I I I 20). 
As 8 is increased from -cc to +CO, A;,+' increases from zero, attains a maximum 
and then decreases back to zero. The two tails are easily explained: for 8 < 8, 
(swollen phase), trails and silhouettes have the same critical exponent of 3/4 whereas 
for 8 > e,, they share the same exponent of l / d  = 1/2. Consequently, tend 
to a vanishing value in these regions (see equation (10)). In close propinquity to the 
tricritical temperatures, the moments of the persistence lengths need not be the same 
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and thus the non-vanishing value of 
is a reflection of the slightly steeper collapse of silhouettes than that of trails in the 
proximity of the tricritical temperatures. 

The slight skewness of the plots of 

6. Analysis for trails and silhouettes on a triangular lattice 

We perform analyses of the odd moments of the persistence lengths of trails and 
silhouettes on a triangular lattice in parallel to the analyses of the odd moments of 
the persistence lengths of trails and silhouettes on a square lattice. This will make 
comparisons of the results from these two lattices more transparent. 

6.1. Variation with chain length 

Figures 6 and 7 illustrate the plots of log,,(Xfk+') against logl,l. Again, we observe 
the linear behaviour of the plots for sufficiently low 8 (i.e. before the transition region). 
The regression coefficients, tabulated in table 6(a ) ,  are extracted from lmin I 1 I I,,, 
(inclusive) where lmin = 5 , .  . . ,9 while I,,, is held fixed at 13. The qualitative behaviours 
are quite similar to those observed for trails and silhouettes on a square lattice and we 
shall not elaborate further. 

Figure 6. A 3~ plot of the first odd moment of the persistence length of (a) trails and 
(6) silhouettes on a triangular lattice as a function of the chain length 1 and the temperature 
8. 
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U , O l  

Figure 7. Log-log plots of (X), (X3), (X5) and (X’) against I at a constant 9 
(a) trails and ( b )  silhouettes on a triangular lattice; and at a constant 9 = 4.0 in 
and ( d )  silhouettes on a triangular lattice. 

= 0.0 in 
(c) trails 

6.2. Variation with temperature 

Figures 8(a) and 8(b) are slices of figures similar to that of figure 6 along surfaces of 
constant 1 (1 = 8-13) for the seventh moment of the persistence length ( ( X ’ ) ) .  As the 
temperature is lowered, the odd moments of the persistence lengths decrease rather 
slowly in the swollen regime, and then decrease very rapidly in the transition region. 
The transition region is at a lower value of 0 (0 - 0.6) than previously observed in 85.2. 
This observation provides more corroboration for earlier exact enumeration studies 
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Table 6. The values of (a) the linear regression coefficients of the Naperian logarithm and 
( b )  the prefactors for the first four odd moments of the persistence lengths for trails and 
silhouettes on a triangular lattice. 

Trails Silhouettes 

0 k = l  k = 2  k = 3  k = l  k = 2  k = 3  

(4 pkv 
--CO 1.559 
-5.0 1.558 
-4.0 1.556 
-3.0 1.550 
-2.0 1.535 
-1.0 1.492 
0.0 1.352 
0.6 1.153 
1.0 0.955 
1.6 0.645 
2.0 0.521 
3.0 0.541 
4.0 0.679 
5.0 0.772 

3.100 4.637 
3.098 4.634 
3.094 4.629 
3.084 4.615 
3.056 4.578 
2.976 4.470 
2.727 4.140 
2.373 3.671 
2.010 3.179 
1.375 2.247 
1.047 1.678 
0.919 1.171 
1.250 1.585 
1.573 2.140 

1.559 
1.558 
1.557 
1.554 
1.547 
1.528 
1.472 
1.398 
1.317 
1.129 
0.963 
0.642 
0.692 
0.866 

3.100 
3.099 
3.097 
3.092 
3.079 
3.042 
2.939 
2.803 
2.654 
2.305 
1.986 
1.240 
1.196 
1.564 

4.637 
4.635 
4.633 
4.626 
4.608 
4.558 
4.420 
4.236 
4.035 
3.556 
3.105 
1.891 
1.552 
2.005 

Trails Silhouettes 

0 IogloAo k = l  k = 2  k = 3  1ogloAo k = l  k = 2  k = 3  

(b) b i o  Ak/Ao 
--OO 0.083 
-5.0 0.083 
-4.0 0.083 
-3.0 0.082 
-2.0 0.080 
-1.0 0.078 
0.0 0.076 
0.6 0.073 
1.0 0.056 
1.6 -0.016 
2.0 -0.082 
3.0 -0.218 
4.0 -0.288 
5.0 -0.320 

-0.101 
-0.101 
-0.100 
-0.097 
-0.090 
-0.066 
0.013 
0.132 
0.247 
0.394 
0.404 
0.151 

-0.131 
-0.309 

-0.092 
-0.09 1 
-0.089 
-0.083 
-0.066 
-0.017 
0.141 
0.370 
0.601 
0.964 
1.083 
0.737 
0.084 

-0.44 1 

-0.015 0.083 

-0.010 0.083 
-0.001 0.083 
0.023 0.082 
0.094 0.080 
0.315 0.077 
0.634 0.077 
0.967 0.076 
1.554 0.064 
1.842 0.034 

-0.013 0.083 

1.654 -0.142 
0.722 -0.295 

-0.181 -0.371 

-0.101 
-0.101 
-0.101 
-0.099 
-0.096 
-0.086 
-0.057 
-0.018 
0.026 
0.127 
0.209 
0.271 
0.004 

-0.304 

-0.092 
-0.092 
-0.091 
-0.088 
-0.080 
-0.058 
0.005 
0.088 
0.179 
0.389 
0.572 
0.859 
0.462 

-0.210 

-0.01 5 
-0.014 
-0.012 
-0.008 

0.004 
0.036 
0.126 
0.246 
0.377 
0.687 
0.970 
1.579 
1.267 
0.322 

[16-181. From tables 6(a), we get at 6 = --CO 

1.559 if k = 1 

{ 4.637 if k = 3 

2.079 if k = 1 

{ 2.061 if k = 3. 

p k v  = 3.100 if k = 2  (16) 

which, upon substituting v(SAW) = 0.75, yields 

p = 2.067 if k = 2 (17) 

These results are again in excellent agreement with the scaling analysis result of p = 2.0 
[6]. Similarly for 8 = 0 (Malakis trails), we have 

1.352 if k = 1 

4.140 if k = 3. 
2.727 if k = 2 (18) 
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or that v(Ma1akis) = 0.685 f 0.025 where the error bar is fixed by using p = 2.00 
and p = 2.07. This value of v is smaller than the expected value of v = 0.75 from 
universality class consideration. This discrepancy is understandable and may be easily 
explained. Upon closer scrutiny of the plot of figure 8, we see that the transition 
temperature (8 - 0.6) is rather close to 8 = 0.0 and we see thus that the moments of 
the persistence lengths have already begun to decrease at 8 = 0.0. This will also explain 
why the corresponding values of v for the (Malakis) silhouettes are larger because in 
the latter, the transition temperature is at a larger value of 8 (8 - 1.6): 

1.472 if k = 1 
2.939 if k = 2 
4.420 if k = 3. 

pkv = 

or that v = 0.735 0.025. This result is in agreement with the universality class picture. 
In table 6(b)  are tabulated the values of A,. In the swollen phase, A,  - 1.0 while in 
the collapsed phase, the A, are more erratic. 

c 0.6 

0.4 -a 1 

e 
Figure 8. Plots of (X') against 0 for I = 8-13 in (a) trails and ( b )  silhouettes on a triangular 
lattice; (c) a plot of AY for I = 8-13. 

6.3. Variation of with temperature 

The variation of A/ for 8 I 1 I 13 as a function 8 is shown in figure 8(c ) .  The same 
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qualitative behaviour seen in $5.3 is also seen here, and the same explanation still holds 
here. 

7. Discussions and conclusion 

We have studied the first four odd moments of the persistence lengths of trails and 
silhouettes on both a square and a triangular lattice. The results from the two lattices 
seem to purport the universality class picture that the correlation exponent v is lattice 
independent, except possibly at the tricritical points. The results also support the 
scaling analysis formulae that 

where we have introduced the temperature dependence for the first time. To detect the 
presence of f( l ) ,  we have also performed linear regressions on equation (8) (rather than 
equation (9)) and in each case, we find that the regression coefficients p k v  are always 
larger than those obtained from the Naperian logarithm of equation (9). This may be 
taken as an indication of the positive contributions from the f ( I )  factor. The presence 
of f ( I )  also implies that trails and silhouettes in 2D scale as SAW in 2D. 

The persistence lengths of trails and silhouettes on a triangular lattice (for a fixed 
I )  are always smaller than the corresponding persistence lengths on a square lattice. 
This is intuitively correct if one recalls that on a triangular lattice, the coordination 
number is q = 6 so that the bonds have more flexibility (orientations of successive 
bonds can be more acute or more obtuse instead of the orthogonal relative orientation 
on a square lattice). This is not in contradiction with the universality class picture 
because these differences in persistence lengths on the two lattices are absorbed not 
into the Pkv factor, but into the prefactors, A,. A comparison of tables 5 ( b )  and 6(b)  
would show that this is indeed the case, with the A,  on the triangular lattice smaller 
than those on the square lattice. This same geometrical feature also explains the lower 
value of transition 8 on a triangular lattice because in this case nearest neighbours are 
more abundant and their attractive interactions tend to energetically favour collapse 
configurations. If we further recall that for a silhouette, there is a mutiplicity of trails, 
then the same energetical favouritism explanation also accounts for the observation 
that on a particular lattice, trails always have a lower transition 8 than their silhouettes. 

Probably the most important inferences we can draw from these studies are that 
the moments of the persistence lengths transit from the swollen phase to the compact 
phase within a narrow region of 8 and that as the chain I increases, this region of 8 
narrows. If one may extrapolate this to larger I ,  we may then conclude that above the 
transition region, all walks have the same correlation exponents and likewise below the 
transition region-a conjecture in agreement with that of equation (7). 
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